© The Calendaring and Scheduling Consortium, Inc. 2006 - All rights reserved

CalConnect TC

iCalendar Timezone Problems
and Recommendations

Published Report

Warning for drafts

This document is not a CalConnect Standard. It is distributed for review and comment, and is subject
to change without notice and may not be referred to as a Standard. Recipients of this draft are invited

to submit, with their comments, notification of any relevant patent rights of which they are aware and
to provide supporting documentation.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent
rights of which they are aware and to provide supporting documentation.

The Calendaring and Scheduling Consortium, Inc. 2006

:2006

© 2006 The Calendaring and Scheduling Consortium, Inc.

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or
utilized otherwise in any form or by any means, electronic or mechanical, including photocopying,
or posting on the internet or an intranet, without prior written permission. Permission can be
requested from the address below.

The Calendaring and Scheduling Consortium, Inc.

4390 Chaffin Lane
McKinleyville

California 95519

United States of America

copyright@calconnect.org
www.calconnect.org

ii © The Calendaring and Scheduling Consortium, Inc. 2006 - All rights reserved

mailto:copyright@calconnect.org
https://www.calconnect.org

:2006

Contents
T T T« iv
L Lo T LT of ' o RN v
1. WAhY do We Need time ZONES?......iiiiiiiiinnneniiiesiisssnsnestisesssnsses 1
1.1. Why should time zone information be preserved in a VCALENDAR object rather than
CONVErLING O UTC?....cciiiiiiiiiinetiiiineiesssnetisssssnssssssssssssssssssssssnsssssssssssssssssssssssnsssssssssssess 1
1.2. Should a VCALENDAR object contain whole VTIMEZONE objects or reference to a time
ZONE...ccnneeieiinneeeeintneesisnntesssnneesssssnessssssstesssssssesssssssesssssasesssssntesssssanessssssanessssssesssssnsessns 1
2. Identified implementation problems and recommendations.............cccceevverriiiverienisneerensenes 2
2.1. GeNneral time ZONE ISSUES......c.cceevvueiineiiiiiiineticeeesaessseesssatesssesessessssesssssssssssssssssssssessssssssssanss 2
2.2. CONSUMING TIME@ ZONES.....ccciiiiiueiiiiinerieisierieisssetesssssttsssssssesssnsssssses 3
2.3. Client application time ZONEe iSSUES..........cciievveiiiiiieiiinsietiinisetiensseeissssssssssssssssssssssssssssssssssns 4
2.4. Time zone registry and SErviCe iSSUES.........ciiiireiiriirneeiiiissnericissnesissssnsssssssssssssssssssssssnsssssssassssss 5
L= oL | =] ¢ 4 7% 6

© The Calendaring and Scheduling Consortium, Inc. 2006 - All rights reserved iii

:2006
Foreword

This document incorporates by reference the CalConnect Intellectual Property Rights, Appropriate
Usage, Trademarks and Disclaimer of Warranty for External (Public) Documents as located at

http://www.calconnect.org/documents/disclaimerpublic.pdf.

This document was created by the TIMEZONE Technical Committee of the Calendaring and
Scheduling Consortium. It contains information about common time zone implementation
issues and recommendations on how to resolve these issues. We first justify the need for time
zones, then we identify time zone implementation problems, and then offer some guidelines and
recommendations. Take note that the listed recommendations often describe what vendors are
currently doing to solve the problems.

iv © The Calendaring and Scheduling Consortium, Inc. 2006 - All rights reserved

http://www.calconnect.org/documents/disclaimerpublic.pdf

:2006
Introduction

This document contains information about common time zone implementation issues and
recommendations on how to resolve these issues. We first justify the need for time zones,

then we identify time zone implementation problems, and then offer some guidelines and
recommendations. Take note that the listed recommendations often describe what vendors are
currently doing to solve the problems.

© The Calendaring and Scheduling Consortium, Inc. 2006 - All rights reserved v

:2006

iCalendar Timezone Problems and Recommendations

1. Why do we need time zones?

This section contains emails gathered on various mailing lists (e.qg.: ietfcalsify@osafoundation.org,
tc-timezone-l@calconnect.org...) and a summary of discussions between Calendaring and
Scheduling Consortium members.

1.1. Why should time zone information be preserved in a VCALENDAR object rather
than converting to UTC?

1.1.1.

Recurring events that occur on both sides of a daylight savings time change need the appropriate
time zone information to ensure they happen at the correct local time.

1.1.2.

Keeping the time zone information during the whole life of the event is important because it allows
the events to be adjusted if a change to the time zone rules occurs.

1.1.3.
Interoperability with well-established products is a requirement for most calendar applications.
Anything that those products support will most likely have to be supported by the majority of

standards-based calendar applications, so we should keep time zones in the standard, clarifying
them if needed instead of removing them entirely.

1.1.4.

It gives more context information about the meeting creation that can be used in the future if the
meeting times have to be adjusted.

1.1.5.

Because the day of the week corresponding to a local time and a UTC time may be different,
recurrence rules cannot reliably be expanded using only UTC time.

EXAMPLE
A meeting occurring every first Monday of the month at 0:30 CEST would be 22:30 every Sunday

in UTC. Since the first Sunday of the month is not always occurring just before the first Monday
of the month, converting that event to UTC would not expand that rule correctly.

1.2. Should a VCALENDAR object contain whole VTIMEZONE objects or reference to a
time zone?

Here are some arguments for having a whole VTIMEZONE object inside a VCALENDAR object instead
of just a reference to an external time zone definition:

1.2.1.

Including the VTIMEZONE data in the VCALENDAR object makes the entity self contained and very
portable.

© The Calendaring and Scheduling Consortium, Inc. 2006 - All rights reserved 1

mailto:ietfcalsify@osafoundation.org
mailto:tc-timezone-l@calconnect.org

:2006

1.2.2.

An application with only offline viewing capabilities does not have to worry about keeping a time
zone database if all the VCALENDAR objects contain the necessary time zone information.

2. Identified implementation problems and recommendations
Implementing a standards-compliant calendar client or server that supports time zones correctly

is not an easy task. This section describes some common implementation problems and
recommendations in italics.

2.1. General time zone issues

21.1.
How should a client / server react towards existing meetings when a time zone rule changes? For
example, if DST changes for a time zone, should the existing meetings created in that time zone be

adjusted to the new rules or should they remain the same and let the changes be applied only to
newly created events?

21.1.1.
In most cases, meetings created using a time zone should use the new time zone definition
so that effected recurrences reflect the time zone change (Example: Lunch at noon every day).

Cases where the timing has to be fixed should be created in UTC (Example: Enter a few digits on a
terminal every 108 minutes), which has no dependency on time zone rules.

2.1.2.

How should a client / server handle a new time zone?

2.1.2.1.

If a client /server model is used, the server should have a means of updating the time zone list.

This can be accomplished in many different ways such as keeping a checksum of the “current” time
zone list; when that list changes on the server, clients simply re-download their local copies.

2.1.2.2.
If a PIM client is used (no server), a patch could be issued updating its time zone list.

2.1.3.

How should a client / server handle a time zone fork? (For example: if DST changes in the US only
and not in Canada and meetings were created using an EST5EDT time zone). This could create two
new time zones EST5EDT_CA for Canada and EST5EDT_US for the US (and deprecating EST5EDT).

2.1.3.1.

The GEO property might be used to detect which of the new time zones every meeting belongs in.

2.1.3.2.

The LOCATION property can also be used to detect the appropriate time zone for the meetings.

2 © The Calendaring and Scheduling Consortium, Inc. 2006 - All rights reserved

:2006

2.1.3.3.

If no information in the calendar object can be used to detect the appropriate new time zone, a
default choice could be used based on where the majority of the meetings usually occur.

2.2. Consuming time zones

Quite often, applications have a list of time zones stored internally or in a non-standard registry,
and when a meeting is created with a time zone, the application will:

1) Try to match the supplied time zone with its internal representation. This match can be
accomplished by using any of these techniques:
— Have an algorithm pick an internal time zone with the closest corresponding set of rules to
the supplied one.
— Try to match the TZID with its internal counterpart.
2) If no match can be found the application will do one of these:
— Return an error.
— Add the new time zone to its internal time zone list.

At this point, these problems can occur:
2.21.

If the application cannot add “unmatchable” time zones to its internal list, even a perfectly valid
VTIMEZONE can be rejected.

2.2.1.1.

The meeting could be converted to UTC using the provided time zone, take note that this solution
is less than ideal since time zone information is lost.

2.2.2.

If the application has in its internal list a TZID “America/New_York”, and receives a VTIMEZONE with
a TZID “America/New_York” with a different definition than its internal one, the server may react
unpredictably.

2.2.2.1.
If using a time zone registry the time zone definition of the registry should be the one used.
2.2.2.2.

If using an internal time zone list that can be changed, a versioning of the TZID could be used
allowing different versions of the same TZIDs to be kept. This would allow applications to have
events using different time zones with the same TZID. Take note however that consuming and
preserving all time zones can become quite problematic:

— Since time zone ids are often shown to users, the time zone list could become quite large and
confusing over time.

— The need to “preserve” the original consumed time zone can also look like a bad idea when a
time zone rule changes; meetings that have yet to occur will most likely need to be updated
with the new time zone rule.

© The Calendaring and Scheduling Consortium, Inc. 2006 - All rights reserved 3

:2006

2.3. Client application time zone issues

2.3.1. How should client applications present a choice of time zones to users?
2.3.1.1.

Use TZDATA database (a.k.a. Olson Database, “America/New_York”) names.
2.3.1.2.

Use a GMT Offset scheme ("GMT+2, Cairo”...).

2.3.1.3.

Use common name presentation (EST5EDT, PST8PDT...).

2.3.1.4.

Additionally, a “clickable” world map is often used.

2.3.2. Where should a client application get its supported time zone list?
2.3.2.1.

Use TZDATA database (a.k.a. Olson Database).

2.3.2.2.

Use standardized registry.

2.3.3. How can a client application map the Operating System time zone to the calendar
server time zone?

2.3.3.1.

Time zone registry with “aliases” could be used. The mapping of OS time zone to a standardized
time zone database could be provided by OS Vendors or by a third party. For the long term,
platform vendors should ideally start using data coming from a standardized registry.

2.3.4. How often should a client update its time zone definition

2.3.4.1.

Clients can compare a checksum of its time zone list against the server’s checksum, if it's different;
the client refreshes its time zone list with the server’s time zone list.

2.3.4.2.

By doing periodic checks on the server.
2.3.4.3.

Using a push mechanism notifying the client that a time zone has been updated. Possibly by
adding a new iTIP method.

4 © The Calendaring and Scheduling Consortium, Inc. 2006 - All rights reserved

:2006

2.4. Time zone registry and service issues

2.4.1. Why do we need a time zone registry and service?

2.4.1.1.

A time zone registry would be useful in producing a standardized list of time zones.

2.4.1.2.

A time zone service protocol would be useful in defining how time zones should be retrieved and in
what format.

2.4.1.3.

A time zone registry and service would promote interoperability.

2.4.1.4.

A time zone registry and service would solve the problems encountered when trying to consume
time zones.

2.4.1.5.

A time zone service means having centralized time zone definitions that are easy to update.

2.4.1.6.

A time zone registry and service could open the door for time zones being sent by reference
(Useful for mobile devices and other bandwidth limited platforms).

2.4.2. How should a time zone registry be implemented?

2.4.2.1.

By using an IANA registry to store time zone data with a standardized naming scheme.
2.4.3. How should a time zone service be implemented?

2.4.3.1.

By defining a standardized way to retrieve the IANA registered time zones (i.e.: VTIMEZONE objects
accessible through an extension of CalDAV, DNS, HTTP....).

2.4.4. Who should be responsible for updating it, how can it be trusted?

24.4.A1.

Updates could be done through: RFC, informational RFC, appointed/elected committee/individual
who approves updates to the list.

© The Calendaring and Scheduling Consortium, Inc. 2006 - All rights reserved 5

:2006

Bibliography

[1]

[2]

[3]
[4]

(5]

[6]

Time zone registry draft http://www.ietf.org/internet-drafts/draft-royer-timezone-reqgistry-
02.txt

Windows time zones to TZID mapping http://unicode.org/cldr/data/diff/supplemental/
supplemental.html#windows___tzid

CalDAV Draft http://ietfreport.isoc.org/all-ids/draft-dusseault-caldav-08.txt

IETF RFC 2445, F. DAWSON and D. STENERSON. Internet Calendaring and Scheduling Core
Object Specification (iCalendar). 1998. RFC Publisher. https://www.rfc-editor.org/info/rfc2445.

IETF RFC 2446, S. SILVERBERG, S. MANSOUR, F. DAWSON and R. HOPSON. iCalendar
Transport-Independent Interoperability Protocol (iTIP) Scheduling Events, BusyTime, To-dos and
Journal Entries. 1998. RFC Publisher. https://www.rfc-editor.org/info/rfc2446.

TZ Database (Olson) http://www.twinsun.com/tz/tz-link.htm

© The Calendaring and Scheduling Consortium, Inc. 2006 - All rights reserved

http://www.ietf.org/internet-drafts/draft-royer-timezone-registry-02.txt
http://www.ietf.org/internet-drafts/draft-royer-timezone-registry-02.txt
http://unicode.org/cldr/data/diff/supplemental/supplemental.html#windows___tzid
http://unicode.org/cldr/data/diff/supplemental/supplemental.html#windows___tzid
http://ietfreport.isoc.org/all-ids/draft-dusseault-caldav-08.txt
https://www.rfc-editor.org/info/rfc2445
https://www.rfc-editor.org/info/rfc2446
http://www.twinsun.com/tz/tz-link.htm

	Foreword
	Introduction
	1. Why do we need time zones?
	1.1. Why should time zone information be preserved in a VCALENDAR object rather than converting to UTC?
	1.1.1.
	1.1.2.
	1.1.3.
	1.1.4.
	1.1.5.

	1.2. Should a VCALENDAR object contain whole VTIMEZONE objects or reference to a time zone?
	1.2.1.
	1.2.2.

	2. Identified implementation problems and recommendations
	2.1. General time zone issues
	2.1.1.
	2.1.1.1.

	2.1.2.
	2.1.2.1.
	2.1.2.2.

	2.1.3.
	2.1.3.1.
	2.1.3.2.
	2.1.3.3.

	2.2. Consuming time zones
	2.2.1.
	2.2.1.1.

	2.2.2.
	2.2.2.1.
	2.2.2.2.

	2.3. Client application time zone issues
	2.3.1. How should client applications present a choice of time zones to users?
	2.3.1.1.
	2.3.1.2.
	2.3.1.3.
	2.3.1.4.

	2.3.2. Where should a client application get its supported time zone list?
	2.3.2.1.
	2.3.2.2.

	2.3.3. How can a client application map the Operating System time zone to the calendar server time zone?
	2.3.3.1.

	2.3.4. How often should a client update its time zone definition
	2.3.4.1.
	2.3.4.2.
	2.3.4.3.

	2.4. Time zone registry and service issues
	2.4.1. Why do we need a time zone registry and service?
	2.4.1.1.
	2.4.1.2.
	2.4.1.3.
	2.4.1.4.
	2.4.1.5.
	2.4.1.6.

	2.4.2. How should a time zone registry be implemented?
	2.4.2.1.

	2.4.3. How should a time zone service be implemented?
	2.4.3.1.

	2.4.4. Who should be responsible for updating it, how can it be trusted?
	2.4.4.1.

	Bibliography

